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Abstract: Hand pose estimation (HPE) plays an important role during the functional assessment of
the hand and in potential rehabilitation. It is a challenge to predict the pose of the hand conveniently
and accurately during functional tasks, and this limits the application of HPE. In this paper, we
propose a novel architecture of a shifted attention regression network (SARN) to perform HPE.
Given a depth image, SARN first predicts the spatial relationships between points in the depth
image and a group of hand keypoints that determine the pose of the hand. Then, SARN uses these
spatial relationships to infer the 3D position of each hand keypoint. To verify the effectiveness of
the proposed method, we conducted experiments on three open-source datasets of 3D hand poses:
NYU, ICVL, and MSRA. The proposed method achieved state-of-the-art performance with 7.32 mm,
5.91 mm, and 7.17 mm of mean error at the hand keypoints, i.e., mean Euclidean distance between
the predicted and ground-truth hand keypoint positions. Additionally, to test the feasibility of SARN
in hand movement recognition, a hand movement dataset of 26K depth images from 17 healthy
subjects was constructed based on the finger tapping test, an important component of neurological
exams administered to Parkinson’s patients. Each image was annotated with the tips of the index
finger and the thumb. For this dataset, the proposed method achieved a mean error of 2.99 mm at the
hand keypoints and comparable performance on three task-specific metrics: the distance, velocity,
and acceleration of the relative movement of the two fingertips. Results on the open-source datasets
demonstrated the effectiveness of the proposed method, and results on our finger tapping dataset
validated its potential for applications in functional task characterization.

Keywords: hand pose estimation; finger tapping test; hand movement recognition; deep learning;
computer vision; depth camera

1. Introduction

Hand pose estimation (HPE) is an important research topic that is widely studied
and applied in many fields, including augmented reality (AR) and virtual reality (VR) [1],
human-computer interactions (HCI) [2], robotics [3], and medicine [4–11]. HPE is usually
achieved by predicting the positions of a group of hand keypoints that determine the pose
of the hand, such as the finger joint center and center of the palm. In medicine, HPE is
essential to recognizing hand movement [7,12] and in rehabilitating hand functions [5,8]. It
can provide clinicians and physical therapists with accurate estimates of hand movement
in different hand tests while maintaining inter-observer reliability [7]. Traditional HPE
methods track hand movements using wearable sensors [4–6]. Sensor-based methods can
track hand positions accurately, but the size and mass of the sensors may interfere with
the movement of the hand, leading to measurement errors [7]. Moreover, because of the
specifics of the sensors and their calibration, sensor-based methods become limited to
specific testing environments.

In recent years, deep learning methods have been used in HPE. Generally, learning-
based methods use camera images as input and enjoy two main advantages compared to
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sensor-based methods. First, subjects can execute hand movements without interference
from wearable sensors. Second, hand movements can be performed where images can be
acquired. For example, a participant can do the test at home and record it in a video. This
can also provide safety to the participant and the caregiver in scenarios where there are
risks of potential infection. Based on these, learning-based methods are gradually gaining
popularity. Some studies have implemented learning-based HPE on RGB images for hand
movement recognition and functional rehabilitation [12,13].

However, the accuracy of RGB-image-based methods is much lower than sensor-
based methods because RGB images lack spatial information. In contrast, depth images
additionally have distance information associated with each pixel in the image with respect
to a camera. Depth images are 2.5D images; each pixel in the image with a non-zero
depth value corresponds to a point on the surface of the object, as shown in Figure 1.
Depth-image-based methods [14–20] can perform better than RGB-image-based methods
in hand movement recognition. However, these methods are still limited in recognizing
hand posture accurately.

Coordinate 

Transformation

Figure 1. Left: a colorized depth image of a hand. Each pixel on the depth image has its position
in the image coordinate frame, which is determined by the row and column in which the pixel is
located, and the depth value from the camera. Right: the positions of all the points corresponding
to the pixels on the depth image in the 3D world coordinate frame centered at the depth camera.
The coordinates of pixels in the two coordinate frames can be converted to each other by coordinate
transformation. In the following sections, we use pixels to refer to points in 3D space.

In order to improve the accuracy of HPE, in this paper, we propose a novel architecture
of a shifted attention regression network (SARN) to perform convenient and accurate hand
pose estimation. Given a depth image, SARN predicts the position of hand keypoints in
two stages. In each stage, the proposed model predicts the spatial relationships between
pixels and hand keypoints through a backbone network and a dense extraction module.
The two stages are stacked in a cascade form by a soft input aggregation module, where
the second stage of the network refines the predictions after the first stage. At the end of
the second stage, the proposed model utilizes the spatial relationships pixel-wise to obtain
the estimation of the position of each hand keypoint.

To test the effectiveness of the proposed method, we first conducted experiments
on three open-source datasets of 3D hand poses, NYU [21], ICVL [22], and MSRA [23].
These datasets are often used as benchmarks for evaluating 3D hand pose estimation
methods [14–20]. On all these three datasets, SARN achieved state-of-the-art performance.
To validate the feasibility of the proposed method in hand movement recognition, we
constructed our own dataset with depth images, which we call the PAKH dataset. This
dataset comprises 26K depth images from 17 healthy subjects based on the finger tapping
test, an important component of neurological examinations administered to Parkinson’s
patients. Each depth image is annotated with the tips of the thumb and index finger.

Overall, the contributions of this manuscript include:

• We propose a novel depth-image-based method, SARN, for convenient and accurate
3D hand pose estimation during functional tasks.
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• We propose a novel structure, soft input aggregation, to connect a multi-stage model
to reduce the error of 3D hand pose estimation.

• We construct a dataset consisting of 26K depth images from 17 healthy subjects based
on the finger tapping test, often used in neurological examinations of Parkinson’s
patients.

• For PAKH, the proposed method achieved a mean error of 2.99 mm for the hand
keypoints and comparable performance on three task-specific metrics: the distance,
velocity, and acceleration of the relative movement of the two fingertips.

2. Related Work
2.1. Sensor-Based HPE Methods

Sensors are currently the primary tools for performing HPE in hand movement recog-
nition. A popular way to implement sensor-based HPE is by sensor gloves. Pei-Chi et al. [4]
designed a data glove embedded with 9-axis inertial sensors and force-sensitive resistors
to enable hand pose recognition in real time. Yang et al. [5] developed a sensor glove
based on resistive bend sensors to monitor finger joint angles. Moreira [8] designed a
glove with eleven inertial measurement units attached to the proximal and distal phalanges
and the back of the hand to capture hand movements. Other studies have used sensors
attached to the hand to determine its pose. Chen et al. [6] designed a multi-point tracking
system using electromagnets and magnetic sensors to track fingertip movements in real
time. Julien et al. [10] used a triaxial accelerometer mounted at the fingertip to extract
hand movement features. Ji-Won et al. [11] used a miniature lightweight gyrosensor to
measure finger taps. Yuko et al. [9] evaluated hand movement using magnetic sensors
fixed on hands. Abraham et al. [24] used lensless smart sensors and designed computa-
tional algorithms to track the positions of infrared light-emitting diodes attached to the
hands and perform hand gesture recognition. Gosala et al. [25] fused the predictions of a
stretch-sensing soft glove, three IMUs, and an RGB-D camera based on the availability and
confidence estimation to enable seamless hand tracking. All of these methods have sensors
attached to the human hand. While these devices can accurately track the motion of the
hand, their size and mass interfere with hand movements, which leads to errors in pose
estimation during hand movements.

2.2. Learning-Based HPE Methods

Learning-based methods can be classified as regression-based methods and detection-
based methods. Regression-based methods directly predict hand keypoint positions based
on a depth image. Oberweger et al. [18] improved the predictions of hand poses by
introducing a prior distribution of hand keypoints within a convolutional neural network
(CNN). Later, they [14] refined their model by making simple improvements such as better
initial hand localization. Chen et al. [15] reorganized the features for 3D HPE by dividing
feature maps into several sub-regions based on the initial estimate. Ge et al. [26] proposed to
directly process the 3D points that model the visible surface of the hand for pose regression
and designed another network to refine the fingertip location. Chen et al. [20] used a
subnetwork to assign semantic labels for each point and used another network to integrate
the semantic priors with both input and late fusion strategy and regress the final hand pose.

In contrast, detection-based methods predict dense representations. A dense repre-
sentation refers to the spatial relationships between pixels and hand keypoints. Dense
representations can be classified as heatmaps and offset maps. A heatmap represents the
likelihood of a hand keypoint appearing at the position of each pixel, and an offset map
consists of the vectors pointing from a hand keypoint to each pixel. Both heatmaps and
offset maps can be 2D or 3D, depending on whether they are calculated in the image
coordinate frame or in the world coordinate frame. A detection-based model uses the dense
representation predicted to infer the position of hand keypoints. Ren et al. [27] used a
3D offset map to unify the predictions in three directions and derived the hand keypoint
positions by post-processing methods. Moon et al. [28] estimated a 3D heatmap for each
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hand keypoint by implementing a voxel-to-voxel prediction based on 3D grids. Some
studies integrated the estimation of hand keypoint positions into the pipeline to reduce the
gap between training the network and inferring the hand keypoint positions. Fu et al. [29]
used a 2D offset map to integrate the 2D positions of the hand keypoints in the image
and used another branch to predict their depth values. Mohammad et al. [17] predicted a
2D heatmap to integrate the 2D positions of hand keypoints and supervise the estimation
of depth values of each hand keypoint. Huang et al. [30] predicted the hand keypoint
positions by weighting the 3D offset map with a 3D heatmap. The dense representations
proposed by these methods did not take full advantage of the spatial information contained
in the depth map, and this limits the performance of these methods.

The proposed method leverages a fused heatmap for estimating hand keypoint posi-
tions similar to [17], which is one of the state-of-the-art methods for 3D HPE. However, our
implementation of the heatmap has several features that make it unique and enable it to
perform better than previous works. First, our heatmap is 3D instead of 2D. Second, we
perform the estimation of the hand keypoint positions as a whole through the 3D offset
map rather than separating it into estimating the 2D position in the image and depth values.
Moreover, our training process is supervised by the ground truth of a 3D heatmap instead
of 2D positions in the image. With these features, our method can better utilize the spatial
information in the depth map and thus achieve higher precision.

3. Materials and Methods
3.1. Overview of the Framework

The working pipeline of the proposed SARN is shown in Figure 2. SARN is a two-
stage model, which consists of a pre-processing module, an input aggregation module, two
backbone networks, two dense extraction modules, and a pixel-wise integration module.
Each stage of SARN consists of a backbone network and a dense extraction module. Both
stages extract a dense representation of the spatial relationships between pixels and hand
keypoints in the world coordinate frame. The input aggregation module extracts feature
maps from the first stage and transfers them into the second stage to connect the two stages.
The pixel-wise integration module takes the dense representation output from the second
stage to infer the 3D position of each hand keypoint. We implement supervision on both
the dense representation of the second stage and the hand keypoint position. Each part is
described in detail in the following sections.
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Figure 2. The working pipeline of the proposed SARN. The input of SARN is a depth image of size
1× H×W, and the output is the 3D position of J hand keypoints, which has a size of 3× J. H and W
represent the height and weight of the input depth image. Pre-processing module extracts C feature
maps of size H

2 ×
W
2 from the input depth image. SE-Residual is a variant of the residual block [31];

we will introduce its structure in Section 3.3. Ii and Qi stand for the input features and output of
the backbone network at stage i. Vi and Hi denote the dense representation predicted by the dense
extraction module at stage i. For Ii, Qi, Vi, and Hi, i = 1, 2. F1 is an intermediate feature in the dense
extraction module at the first stage.
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3.2. Dense Extraction Module

Figure 3 shows the components of the dense extraction module at the i-th stage. A
dense extraction module consists of a feature extraction module, three parallel Conv layers,
and a channel-wise weighting layer. The dense extraction module uses the feature maps
output by the backbone network at the same stage to predict a dense representation of
spatial relationships between pixels and hand keypoints, which consists of a 3D offset map
and a characteristic shifted attention heatmap.
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Figure 3. Illustration of the dense extraction module at stage i. The feature extraction module consists
of a SE-Residual block, a Conv layer, a batch normalization (BN) layer, and a ReLU activation function.
Vi and Si are the two parts of the predicted 3D offset map, and Si and Gi form the shifted attention
heatmap. Ci, Hi, and Wi are the number, height, and width of the feature maps at stage i. In our
implementation, Ci = C, Hi =

H
2 , and Wi =

W
2 for i = 1, 2.

3.2.1. 3D Offset Map

A 3D offset is a vector pointing from the position of a hand keypoint to the position
of a pixel in the world coordinate frame. The 3D offset map of a hand keypoint consists
of 3D offsets pointing from that hand keypoint to all pixels in the depth image. The 3D
offset map represents the spatial relationships between a hand keypoint and each pixel.
Unlike a 2D offset map or heatmap, the 3D offset map keeps the original representation
of the depth image and can better utilize the spatial information in it [32]. Based on this,
we chose the 3D offset map as the dense representation of the spatial relationship between
pixels and hand keypoints. For a hand keypoint j, a depth image of size 1× Hd ×Wd can
generate Hd ×Wd 3D offsets, so the 3D offset map of keypoint j, Oj, is of size 3× Hd ×Wd.
The formulation of a 3D offset in Oj is shown below.

Oj(p) =
{

p− pj ‖p− pj‖2 ≤ θ

0 otherwise
(1)

where Oj(p) ∈ R3 represents the 3D offset pointing from hand keypoint j to pixel p,
p ∈ R3 denotes the position of a pixel in the world coordinate frame, and pj ∈ R3 denotes
the ground-truth position of hand keypoint j. θ stands for the radius of a sphere that is
centered at the position of keypoint j to indicate the space where candidate supporting
points are located. Those candidate supporting points are spatially close pixels of keypoint
j. If p is not a supporting point of keypoint j, that is, if the Euclidean distance between
pixel p and keypoint j is larger than θ, the 3D offset between them will be set to zero. The
3D offset map Oj can be further decomposed into a spatial closeness heatmap Sj of size
1× Hd ×Wd and a directional unit vector map V j of size 3× Hd ×Wd. This decomposition
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is achieved by decomposing each 3D offset in Oj into a spatial closeness and a directional
unit vector, as follows:

Sj(p) =

{
θ−‖p−pj‖2

θ ‖p− pj‖2 ≤ θ

0 otherwise
(2)

V j(p) =

{ p−pj
‖p−pj‖2

‖p− pj‖2 ≤ θ

0 otherwise
(3)

where Sj(p) ∈ R represents the spatial closeness between hand keypoint j and pixel p.
V j(p) ∈ R3 denotes the directional unit vector pointing from hand keypoint j to pixel p.

For each keypoint j, we calculate a spatial closeness heatmap Sj and a directional unit
vector map V j. J hand keypoints result in J spatial closeness heatmaps and J directional unit
vector maps. We stack the spatial closeness heatmaps of all keypoints to obtain an overall
spatial closeness heatmap S and the stack directional unit vector maps of all keypoints to
obtain an overall directional unit vector map V; that is:

S = (S1, S2, ...SJ), V = (V1, V2, ...V J) (4)

where S is of size J × Hd ×Wd, and V is of size 3J × Hd ×Wd.
In our implementation, we interpolate the input depth image to obtain a smaller depth

image of size 1× H
2 ×

W
2 and then use this new depth image to calculate the 3D offset map,

so Hd = H
2 and Wd = W

2 . In the dense extraction module, we use two branches to predict S
and V separately; this process is supervised by the ground-truth value computed by the
above formulas.

3.2.2. Shifted Attention Heatmap

The spatial closeness heatmap S is calculated by the distances between pixels on the
depth image and hand keypoints; it can be seen as a natural representation of spatial
correlations between pixels and keypoints [30]. When a pixel is closer to a hand keypoint in
space, the spatial correlation between them is usually stronger. This pixel can thus provide
more information when predicting the position of that hand keypoint. Former works,
therefore, weighted the 3D offset map with a spatial closeness heatmap [30] or implemented
post-processing methods such as argmax on it [27] to infer the hand keypoint’s position.
However, spatial closeness does not always correspond exactly to spatial correlation. This
can be explained by hand geometry. Human hands consist of many parts, some of which
are more flexible than others. For example, the fingers are more flexible than the palm.
When bending a finger, these points on the tip or the proximal interphalangeal (PIP) joint of
that finger may move significantly, with the metacarpophalangeal (MCP) joint keeping its
position, as shown in Figure 4. In this case, though spatially close to the MCP joint, points
on the finger do not have strong spatial correlations with it.

In contrast, the motion of the palm is much simpler. Without moving the MCP joint of
the index finger, the positions of the points on the palm can hardly change in a complex
way. Therefore, a point on the palm can have a stronger spatial correlation with the MCP
joint of the index finger, even though they are farther from it compared to those points on
the finger.

To better utilize such implicit spatial correlations that are difficult to quantify, we
use another branch to learn a heatmap without the supervision of the ground truth of the
spatial closeness heatmap. Unlike the spatial closeness heatmap, this heatmap aims to find
geometrically meaningful points, so we name it the geometry closeness heatmap. Then, we
fuse the predicted spatial closeness heatmap and geometry closeness heatmap to leverage
the information contained in both. This fusion operation is achieved by a channel-wise
weighting of the above two heatmaps, as follows:
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Hi = αiSi + (1− αi)Gi (5)

where αi ∈ RJ denotes a learnable channel-wise weighting factor at stage i, and Hi =

(H1
i , H2

i , ...H J
i ) and Gi = (G1

i , G2
i , ...G J

i ) represent the fused heatmap and the geometry

closeness heatmap at stage i. Si = (S1
i , S2

i , ...SJ
i ) represents the predicted spatial closeness

heatmap at stage i. At the end of the second stage, we obtain the prediction of each pixel
for the position of each hand keypoint by combining the position of each pixel with the
predicted 3D offset map of each keypoint. After that, we use the shifted attention heatmap
to weight the predictions of all pixels to obtain the final estimation of the position of each
hand keypoint. For example, the estimated position of hand keypoint j is:

pj = ∑
p
((θSj

2(p)− θ)V j
2(p) + p)H j

2(p) (6)

in which pj is the estimated position of keypoint j. Sj
2 and V j

2 are the predicted spatial

closeness heatmap and directional unit vector map of keypoint j at the second stage. H j
2 is

the shifted attention heatmap of keypoint j at the second stage, which is the j-th channel
of H2.

Figure 4. Qualitative results of the spatial correlations between the MCP joint of the index finger and
different parts of the hand. The red point denotes the center of the MCP joint of the index finger. The
solid orange boundary indicates the area of the index finger. The brown dashed boundary indicates
the area of the palm.

Figure 5 shows a qualitative result of the spatial closeness heatmap and the fused
heatmap of the center of the MCP joint of the thumb. The spatial closeness heatmap
calculates spatial correlations based entirely on spatial proximity; pixels closer to the
MCP joint of the thumb are therefore considered more important. In contrast, the fused
heatmap finds some geometrically important points on the wrist while also focusing on
the neighborhoods of the MCP joint of the thumb. We refer to the transformation from
the spatial closeness heatmap to the fused heatmap as attention shifting and call the fused
heatmap a shifted attention heatmap. The difference between the two heatmaps caters to
our intuition: though far away in space, some geometrically meaningful points may be of
greater spatial correlation with hand keypoints than those spatial proximity points.
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ҧ𝑆2
𝑗𝑆𝑗 𝐻2

𝑗

Figure 5. Qualitative results of the heatmaps of the MCP joint center of the thumb. The white
dot represents the center of the MCP joint of the thumb. Warm-colored areas are considered more
spatially correlated with the MCP joint than cold-colored areas. Compared to the spatial closeness
heatmap, the fused heatmap finds more spatially correlated points on the wrist.

3.3. Backbone Network

We use the SE-Hourglass network, a simple modification of Hourglass [33], as our
backbone network. Hourglass is an encoder-decoder network that uses a bottom-up,
top-down design, combined with skip connections, to extract features of various scales.
Several hourglass networks can be stacked together to repeat this process; while the first
stage outputs a bad prediction, subsequent stages reevaluate and refine it to achieve better
performance. We obtain the SE-Hourglass network by replacing the residual blocks used
in Hourglass with SE-residual blocks. SE-residual is a variant of the residual block with a
squeeze-and-excitation (SE) module. SE-residual can better utilize the feature information
by exploring the inter-dependencies between channels [34], therefore performing better
than the original block. The structure of the Hourglass network and the SE-residual block
are shown in Figure 6.

Residual

𝐆𝐥𝐨𝐛𝐚𝐥 𝐏𝐨𝐨𝐥𝐢𝐧𝐠

Fully Connected

ReLU

Fully Connected

Sigmoid

Scale

Add

Figure 6. Illustration of the backbone network. Left: the structure of the Hourglass network [33].
Each box represents a residual block. Right: the structure of the SE-residual block. In SE-Hourglass,
residual blocks are replaced by SE-residual blocks.

3.4. Soft Input Aggregation

Following former pose estimation works [30,32,35,36], we stack two stages for better
estimations. In previous works, multiple stages were connected sequentially [32,36] or
stacked together by Conv layers [35]. These methods cannot transfer information between
stages efficiently and therefore fail to utilize the advantages of the multi-stage model. To
solve this problem, we propose a novel soft input aggregation method to better transfer
information between stages. The structure of the proposed soft input aggregation module
is shown in Figure 7. The proposed soft input aggregation module uses three parallel Conv
layers to extract feature maps from three levels of the first stage: input, intermediate, and
output. It also scales the input of the first stage with a learnable channel-wise factor β. Then,
it adds together all the extracted feature maps and the scaled input and transfers them to
the second stage. The most important part of this module is the learnable channel-wise
factor β used to scale the input of the first stage. It is inspired by the work [37], which
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claimed that the presence of identity connections in blocks such as residuals might have
undesirable effects. While their work focuses on improving residual modules, our approach
aims at transferring information between different stages in a stacked model. Figure 8
shows the resulting distribution of β normalizing to [−1, 1] after training. Clearly, this
learnable channel-wise factor approximates a normal distribution, with some channels
having positive and some having negative weights.

1
×

1
 C

o
n

v
S
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le

𝛽: 𝐶 × 1 × 1

1×1 Conv

Concat

1×1 Conv

A
d

d
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Figure 7. Structure of the proposed soft input aggregation module. β represents the learnable
channel-wise factor. Concat denotes the concatenate operation. Inputs of the proposed soft input
aggregation module are I1, F1, V1, and H1. Output is I2, the input features of the second stage.

Figure 8. Qualitative result of the distribution of the channel-wise factor β.

3.5. Loss Function Design

Following [30], we implement supervision on both dense representation and hand
keypoint positions. We use the smooth L1 loss [27] as the loss function for both supervisions,
that is:

Ldense = smoothL1(S− S2) + smoothL1(V −V2) (7)

Lcoord =
J

∑
j=1

smoothL1(pj − pj) (8)

where Ldense denotes the loss of dense representation and Lcoord denotes the loss of hand
keypoints positions. V2 = (V1

2, V2
2, ...V J

2) represents the predicted unit vector map at the
second stage. The total loss is a weighting of the two losses, which can be represented as:

L = σLdense + (1− σ)Lcoord (9)

where σ is a parameter that controls the weights of the two losses, which is set to 0.5 in our
implementation.
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3.6. Implementation Details

Our method was implemented with PyTorch using the Adam optimizer with an initial
learning rate of 0.001. The batch size was set to 20. We multiplied the learning by 0.7
when the loss was not decreasing in 3 steps. Following former works, for both training and
testing phases, we first used a pre-trained CNN network [27] to obtain the hand center and
extract the hand region from a depth image, crop and resize it to the fixed size of 128× 128,
and normalize depth values to [−1, 1]. For the training phase, data augmentation was
applied by geometric transformations including in-plane rotation ([−180, 180]), 3D scaling
([0.9, 1,1]), and random translation ([−10, 10]). SARN was trained on the NYU dataset for
25 epochs, on the MSRA dataset for 30 epochs, and for 35 epochs on the ICVL dataset and
on our PAKH dataset.

4. Experiments and Results
4.1. Datasets and Evaluation Metrics

We conducted experiments on three open-source 3D hand pose datasets, the NYU
dataset [21], the ICVL dataset [22], and the MSRA dataset [23], to test the effectiveness
of our method and on our PAKH dataset to validate the feasibility of our method in finger
tapping tests.

NYU Dataset. The NYU dataset was collected from a frontal view and two side views.
Each view of the NYU dataset provides 72K and 8K depth images with 36 hand keypoint
annotations for training and testing, respectively. Following the protocol used by [38], we
applied our method on only the frontal view with a subset of 14 annotated hand keypoints.

ICVL Dataset. The ICVL dataset consists of 22K depth frames for training and 1.6K
depth frames in two sequences for testing collected from 10 subjects with 16 hand keypoint
annotations. Furthermore, ICVL also provides about 300K augmented training frames by
in-plane rotations of the original images.

MSRA Dataset. The MSRA dataset contains 76.6K depth images collected from
9 subjects. Each subject performed 17 different hand gestures, and each depth frame was
annotated with 21 hand keypoints. Following [23], we adopted the leave-one-subject-out
cross-validation strategy for model evaluation on the MSRA dataset.

Our PAKH Dataset. The PAKH dataset was constructed based on the finger tapping
test, an important component of neurological examinationss administered to Parkinson’s
patients proposed by the Movement Disorder Society [39]. During the finger tapping test,
the participant is asked to tap the tip of the index finger against the tip of the thumb rapidly
while opening the fingers again as far as possible in succession ten times. This test aims to
evaluate the severity of Parkinson’s disease in patients by their inability to open and close
their fingers repeatedly during the test. In our experiment, each participant was asked
to perform the finger tapping test two times with each of the four hand gestures shown
in Figure 9a. During the finger tapping test, an Intel RealSense D435i depth camera [40]
was placed at the front of the participant to capture hand movements in the form of
depth images. Participants were allowed to perform the test at their comfortable positions
within the area that can be captured by the camera. Figure 9b shows a sample of a
complete tapping. Tips of the thumb and index finger were annotated on depth images to
provide the ground truth of the hand keypoint position. Seventeen healthy subjects (age
23.6± 1.7 years, height 177.3± 5.7 cm, weight 73.1± 15.5 kg, BMI 23.1± 4.1) participated
in our experiments, during which 26K depth images were collected. We split subjects into
the training set and test set by the ratio of 13:4. Table 1 shows the number of frames of each
participant with different gestures in the training set and test set.
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(a)

(b)

Figure 9. Finger tapping sample frames from PAKH dataset. (a) Four hand gestures of finger tapping
test in the PAKH dataset, from left to right: right hand with the other three fingers stretched out;
right hand with the other three fingers folded onto the palm; left hand with the other three fingers
stretched out; left hand with the other three fingers folded onto the palm. (b) One complete tapping
consisting of an opening phase (frame 1 to 4) and a closing phase (frame 4 to 7).

Table 1. The number of frames for each gesture in PAKH in training and testing.

Dataset Subject Gesture 1 Gesture 2 Gesture 3 Gesture 4 Total

Training

1 462 375 359 407 1603
2 472 399 399 402 1672
3 321 370 233 292 1216
4 360 333 302 305 1300
5 469 426 367 408 1670
6 299 269 333 340 1241
7 325 316 309 326 1276
8 335 325 276 301 1237
9 357 358 415 404 1534

10 542 399 383 374 1698
11 564 515 468 514 2061
12 415 447 401 423 1686
13 482 462 433 453 1830

Total 5403 4994 4678 4949 20,024

Test

14 343 310 351 333 1337
15 357 319 283 310 1269
16 413 404 441 401 1659
17 511 459 460 439 1869

Total 1624 1492 1535 1483 6134

Evaluation Metrics. We evaluated the performance of the proposed method on three
open-source datasets using two commonly used metrics: per-keypoint and all-keypoint
mean error and success rate. The keypoint error is the Euclidean distance between the
predicted and ground-truth hand keypoint positions. Per-keypoint and all-keypoint mean
error is calculated by averaging the keypoint error of each keypoint and all keypoints
over all test frames. The success rate is the percentage of test frames with each keypoint
error less than a certain threshold. On the PAKH dataset, we evaluated our method using
all-keypoint mean error and several task-specific metrics.

4.2. Comparison with State-of-the-Art Methods

We compared our model with state-of-the-art methods on the NYU, ICVL, and
MSRA datasets. These methods include regression-based methods: Pose-REN [15], REN-
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9×6×6 [19], HandPointNet [26], SHPR-Net [20], and 3DCNN [41], as well as detection-
based methods: TriHorn-Net [17], Point-to-Point [38], CrossInfoNet [42], V2V [28], and
DenseRegression [32].

Figure 10 shows the per-keypoint and all-keypoint mean error (left column) and
success rate (right column). Table 2 summarizes the performance of state-of-the-art methods
by the all-keypoint mean error in millimeters. The result indicates that the proposed method
outperforms all state-of-the-art methods on the NYU dataset and achieves state-of-the-art
performance on the ICVL dataset and MSRA dataset with an all-keypoint mean error of
7.32 mm, 5.91 mm, and 7.17 mm, respectively.

Figure 10. Comparison with state-of-the-art methods on NYU (top), ICVL (middle), and MSRA
(bottom) datasets. The all-keypoint and per-keypoint mean errors are shown in the left column, and
the success rate over different thresholds is shown in the right column.
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Table 2. Comparison with state-of-the-art methods on three public datasets: NYU, ICVL, MSRA.

Methods NYU ICVL MSRA

Ren-9x6x6 [19] 12.69 7.31 9.79
Pose-REN [15] 11.81 6.79 8.65
DenseReg [32] 10.2 7.3 7.23
3DCNN [41] 14.1 - 9.58

V2V-PoseNet [28] 8.42 6.28 7.59
SHPR-Net [20] 10.78 7.22 7.76

HandPointNet [26] 10.54 6.94 8.5
Point-to-Point [38] 9.1 6.3 7.7
CrossInfoNet [42] 10.08 6.73 7.86
TriHorn-Net [17] 7.68 5.73 7.13

Ours 7.32 5.91 7.17

Figure 11 shows the qualitative result of SARN on the NYU dataset.

Figure 11. Qualitative results on NYU dataset. Ground truth is shown in red, and the prediction is
in yellow.

4.3. Ablation Study

To test the effectiveness of the proposed SARN, we conducted three exploration exper-
iments on the NYU dataset since it is a more general dataset with generous hand gestures.

Shifted Attention Heatmap. To analyze the effectiveness of the proposed shifted
attention heatmap, we implemented the proposed model with different heatmaps: (1) a
spatial closeness heatmap; (2) a geometry closeness heatmap; (3) a shifted attention heatmap
(shared weights); (4) a shifted attention heatmap (stage-wise weights). The difference
between 3 and 4 is that in 3, two stages of the model share the weights for fusing the two
heatmaps, which means α1 = α2, while in 4, each stage learns its own weights.

Results shown by the all-keypoint mean error in Table 3 indicate that the proposed
shifted attention heatmap performs better than both the spatial closeness heatmap and the
geometry closeness heatmap, and the shifted attention heatmap with stage-wise weights
performs best.

Table 3. Comparison of different heatmaps.

Methods Mean Error (mm)

Spatial 7.41
Geometry 7.68

Shifted (shared weights) 7.36

Shifted (stage-wise weights) 7.32

Backbone Structure. To investigate the impact of backbone network selection on the
performance of the proposed model, we conducted experiments on two commonly used
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network architectures: Hourglass and ResNet. We implemented the proposed model by tak-
ing the ResNet network with different depths (18, 34, and 50), Hourglass, and SE-Hourglass
as the backbone network. We also implemented the model with different numbers of stages
(1 or 2) to validate the impact of the refinement stage. For the ResNet architecture, we
stacked several deconvolution layers after the original out layer to generate the dense rep-
resentation. In this experiment, we discarded the proposed soft input aggregation module
and used only Conv layers to connect stages in two-stage models to reduce its impact.

As shown in Table 4, the performance of ResNet backbones gradually improves as the
number of layers increases. ResNet-50 achieves a mean error of 7.69 mm. The Hourglass
network performs slightly better than ResNet-34 but worse than ResNet-50. SE-Hourglass
achieves a lower error than Hourglass with few extra parameters. Compared to the
ResNet architecture, the Hourglass architecture is much smaller regarding the number of
parameters. With a refinement stage, both Hourglass or SE-Hourglass backbones perform
better than ResNet-50 with a smaller number of parameters, and SE-Hourglass achieves
the lowest error.

Table 4. Comparison of different backbone networks.

Methods Params Mean Error (mm)

ResNet-18 15.23M 8.03
ResNet-34 25.49M 7.86
ResNet-50 34.01M 7.69

Hourglass (one stage) 4.58M 7.84
SE-Hourglass (one stage) 4.70M 7.78

Hourglass (two stages) 8.74M 7.53
SE-Hourglass (two stages) 8.98M 7.49

Input Aggregation. In this section, we study the effectiveness of our soft input
aggregation module. Here, we focus on the processing of the input of the first stage I1.
We tested four input aggregation methods, which process I1 in different ways: (1) no
processing; (2) using a convolution layer to extract feature maps; (3) using a convolution
layer to extract feature maps and add them with I1; (4) the proposed soft input aggregation
method. The difference between 3 and 4 is that in 4, we use a channel-wise factor to scale
I1. The results shown in Table 5 indicates that for input aggregation methods: (1) raw input
I1 achieves a lower error than feature maps extracted by a convolution layer; (2) adding the
extracted features with I1 achieves better accuracy; (3) adding the extracted features with
channel-wise scaled I1 achieves the best performance.

Table 5. Comparison of different input aggregation methods.

Methods Mean Error (mm)

no processing 7.43
Conv 7.49

Conv+I1 7.38

Soft (Ours) 7.32

4.4. Performance on Our PAKH Dataset

We used our PAKH dataset to test the feasibility of the proposed model in hand
movement recognition. For this dataset, we used the commonly used all-keypoint mean
error and some task-specific metrics for model evaluation. Following [12,43], several
kinematic features of the tapping were deemed significant for evaluating the severity of the
disease. These features included average tapping speed, tapping acceleration, and average
opening velocity of the index finger. To fully validate the capabilities of the proposed model
on the finger tapping test, we took the distance, velocity, and acceleration of the relative
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movement between the two fingertips into consideration and introduced distance error
(Dis Err), velocity error (Vel Err), and acceleration error (Acc Err). Following [7], the Vel Err
and Acc Err are calculated by the finite difference between individual frames of ground
truth and predictions while ignoring the sampling interval. Results are shown in Table 6,
where Vel Err and Acc Err are computed as aforementioned, and all-keypoint mean error
(Pos Err) and Dis Err are in millimeters.

Table 6. Performance on PAKH Dataset (mean ± std).

Methods Pos Err Dis Err Vel Err Acc Err

SARN 2.99 ± 2.33 2.98 ± 2.97 3.32 ± 3.32 5.65 ± 5.52

The results indicate that the proposed method performs well in predicting hand
keypoint position with a 2.99 mm all-keypoint mean error while also achieving comparable
performance in estimating the distance, velocity, and acceleration of the relative movement
between the two fingertips. Figure 12 shows the qualitative result comparison between the
ground truth and predicted distance, velocity, and acceleration of the movement during a
trial of the finger tapping test, which can serve as an intuitive reflection of the performance
of the proposed method.
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Figure 12. Qualitative result comparison between ground truth and predicted tapping distance,
velocity, and acceleration during a trial of the finger tapping test. GT denotes the ground truth.
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Moreover, we also analyzed the variation in the performance of the proposed method
with respect to different moving states. Specifically, the resting time between trials was
removed, and the frames of each tapping in each trial were labeled as percentages from 0 to
100 proportionally, with 0 denoting the beginning of the opening phase, 50 denoting the end
of the opening phase, which is also the beginning of the closing phase, and 100 denoting
the end of the closing phase. For example, in Figure 9b, frames one to four are 0%→ 50%,
and frames four to seven are 50% → 100%. Then, we calculated the errors of SARN at
different percentages, and the results are shown in Figure 13. For all the evaluation metrics,
our model achieves comparable and reasonable error and standard deviation across the
whole movement, which indicates that our model is accurate and stable during the entire
test. At the beginning and end of the tapping, the position error is slightly larger than those
in the middle; this may be attributed to the severe self-occlusion on the fingertips when the
two fingers are close to each other, as shown in the first and last frame in Figure 9b.
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Figure 13. Prediction error bands of SARN during the moving phase.

5. Discussion
5.1. A Novel Deep Learning Framework for Hand Movement Recognition

In clinical practice, the convenient and accurate assessment of hand poses is critical
in hand movement recognition and related neurological examinations. Deep learning has
made hand pose estimation easy to perform, but existing learning-based methods are not
accurate enough, and their feasibilities in hand movement recognition have rarely been
tested. To this end, we proposed a novel network architecture to improve the accuracy of
HPE and constructed a hand movement dataset based on a finger tapping test to validate
the feasibility of the proposed method in hand movement recognition. Our model estimates
the hand keypoint position based on the spatial correlations between different parts of
the hand. Inspired by hand geometry, we introduced a novel shifted attention heatmap
to leverage both spatial closeness and geometry closeness between different hand parts.
Qualitative results and ablation studies have validated the effectiveness of this design. In
addition, we also investigated the impact of inter-stage connections on the performance of a
multi-stage model. Previous works have widely used multi-stage models to perform HPE,
of which only a few have paid attention to inter-stage connections. Our work effectively
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improved the model performance through simple improvements to the previous connection
method. Experiments on three open-source hand pose datasets validated the effectiveness
of the proposed model on hand pose estimation. For the finger tapping dataset we built,
our model also achieved good results in predicting hand keypoint position and distance,
velocity, and acceleration of the relative movement between two fingertips. The data
collection of the PAKH dataset followed the test instructions and considered different hand
postures. The performance of the model on this dataset can be seen as a reflection of that
in practical applications. Based on these exciting results, we believe that our method is
feasible in the finger tapping test and potentially other hand movement experiments.

5.2. Model Performance on Different Datasets

Our model achieved lower errors on our PAKH dataset than on the three open-source
datasets: NYU, ICVL, and MSRA. This can be explained by the differences in the variety of
hand postures in different datasets. Our PAKH dataset is built based on the finger tapping
test, which is a cyclic motion. Compared to the open-source datasets that contain many
different hand postures, the PAKH dataset has more homogeneous data. Deep learning
models typically perform better on homogeneous data, and our model thus achieved lower
errors on the PAKH dataset. This result led us to believe that when being implemented on
other tests characterized by cyclic motion, our method can also achieve better performance
than on the open-source datasets.

5.3. Limitations and Future Work

Despite promising results on the PAKH dataset, our research has several limitations.
First, our dataset only contains data from healthy subjects. However, the movement pat-
terns of healthy subjects differ from those of Parkinson’s patients. Because of neurological
disorders, the hand movements of Parkinson’s patients are often characterized by tremors,
rhythmic shaking, and bradykinesia. These movements are less regular and, therefore,
more difficult to predict. Whether our model can work well on such movements remains to
be tested. Second, when collecting the PAKH dataset, we fixed the position of the camera
and restricted the hand movements of the participants within a certain area. Although
we augmented our dataset by geometric transformations of the original images, the aug-
mented datasets did not fully cover all the situations in practical applications. Changes
in the relative position of the camera and the hands of participants and the surroundings
of the hands of participants could potentially affect the prediction results. To ensure that
our method can be applied to practical scenarios, we need a larger dataset to validate it.
Third, the finger tapping test is only one of the many hand movement tests. Although our
method performed well on the finger tapping test, it is hard to say whether it will perform
well on other tests. Further experiments and analysis on other hand movement tests are
needed to test the capabilities of the proposed model on hand movement recognition.

5.4. Future Prospective

Compared to traditional sensor-based HPE, deep learning methods are less expensive,
easier to deploy, and can be performed remotely. Our model achieved state-of-the-art
performance among deep learning methods. It may still fall short in accuracy compared
to sensor-based methods, but for a movement with a maximum of ten centimeters for
most subjects, we consider an error of less than 3 mm to be acceptable. In the future, with
the increasing computing power of personal computers and the development of deep
learning models and depth cameras, deep learning models will become more efficient and
accurate in hand pose estimation and can thus better assist physicians in diagnosing and
rehabilitating hand-related diseases. Moreover, the low errors achieved by our model on
kinematic indicators important for diagnosis prompt us to believe it is promising to use
deep learning to build an efficient and accurate test-to-diagnosis pipeline in the future. At a
time when epidemics are prevalent, there is reason to believe that such diagnostic methods
that can be performed remotely will become mainstream in the future.
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6. Conclusions

We propose a depth-image based shifted attention regression network (SARN) for
convenient and accurate 3D hand pose estimation. The proposed method uses a shifted
attention heatmap to weight the predictions of different pixels to obtain the hand keypoint
positions. This shifted attention heatmap can fully exploit the spatial correlations between
pixels and hand keypoints by leveraging the information in both spatial closeness heatmap
and geometry closeness heatmap. Experiment results show that SARN achieved state-
of-the-art performance on three open-source 3D hand pose datasets: NYU, ICVL, and
MSRA, with 7.32 mm, 5.91 mm, and 7.17 mm of all-keypoint mean error, respectively. This
demonstrates the effectiveness of the proposed method. The ablation study validates the
validity of each design. To test the feasibility of SARN in hand movement recognition, we
constructed a hand movement dataset of 26K depth images based on a finger tapping test.
The proposed method achieved an all-keypoint mean error of 2.99 mm and comparable
performance on three task-specific metrics: the distance, velocity, and acceleration of the
relative motion of the two fingertips. The success of the proposed method on this dataset
validates its potential for applications in hand movement recognition.
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